Convex Optimal Uncertainty Quantification
نویسندگان
چکیده
Optimal uncertainty quantification (OUQ) is a framework for numerical extreme-case analysis of stochastic systems with imperfect knowledge of the underlying probability distribution. This paper presents sufficient conditions under which an OUQ problem can be reformulated as a finite-dimensional convex optimization problem, for which efficient numerical solutions can be obtained. The sufficient conditions include that the objective function is piecewise concave and the constraints are piecewise convex. In particular, we show that piecewise concave objective functions may appear in applications where the objective is defined by the optimal value of a parameterized linear program.
منابع مشابه
Convex optimal uncertainty quantification: Algorithms and a case study in energy storage placement for power grids study
How does one evaluate the performance of a stochastic system in the absence of a perfect model (i.e. probability distribution)? We address this question under the framework of optimal uncertainty quantification (OUQ), which is an information-based approach for worst-case analysis of stochastic systems. We are able to generalize previous results and show that the OUQ problem can be solved using ...
متن کاملForward and Backward Uncertainty Quantification in Optimization
This contribution gathers some of the ingredients presented during the Iranian Operational Research community gathering in Babolsar in 2019.It is a collection of several previous publications on how to set up an uncertainty quantification (UQ) cascade with ingredients of growing computational complexity for both forward and reverse uncertainty propagation.
متن کاملDynamic Planning the Expansion of Electric Energy Distribution Systems Considering Distributed Generation Resources in the Presence of Power Demand Uncertainty
In this paper, a new strategy based on a dynamic (time-based) model is proposed for expansion planning of electrical energy distribution systems, taking into account distributed generation resources and advantage of the techno-economic approach. In addition to optimal placement and capacity, the proposed model is able to determine the timing of installation / reinforcement of expansion options....
متن کاملLinear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization
In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...
متن کاملRobust Optimal Control with Adjustable Uncertainty Sets
Robust control design for constrained uncertain systems is a well-studied topic. Given a known uncertainty set, the objective is to find a control policy that minimizes a given cost and satisfies the system’s constraints for all possible uncertainty realizations. In this paper, we extend the classical robust control setup by treating the uncertainty sets as additional decision variables. We dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 25 شماره
صفحات -
تاریخ انتشار 2015